Inverse of a 2x2 Matrix

In this document we show how we can find the inverse¹ of a 2x2 matrix.

<u>Determinant</u>

The determinant is an important property of a matrix. For a 2x2 matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

the determinant is defined as follows:

$$det(A) = a_{11}a_{22} - a_{21}a_{12}$$
.

Example 1
For the matrix
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
, $det(A) = 2x2 - 3x1 = 4 - 3 = 1$.

<u>Inverse</u>

The inverse of a square matrix A is denoted A⁻¹. It has the following property:

A
$$A^{-1}=A^{-1}A=I$$
.

For a 2x2 matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

the inverse is defined as

$$\mathbf{A}^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}.$$

¹ Identity and Inverse Matrices

Example 2 For the matrix $A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$, $A^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$.

A matrix does not necessarily have an inverse. If the determinant is zero then clearly the inverse cannot be defined. A matrix without an inverse is said to be singular.

```
Example 3
For example, the matrix A = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}, det(A)=2x2-4x1=0. It has no inverse.
```

Spreadsheet

The accompanying spreadsheet² can compute the inverse of a 2x2 matrix.

			Mat	rix inve	rse					
A=	2	! 1				change values in yellow background				
	3	2								
determinant=		1								
A^(-1)=	2	-1				the inverse				
	-3	2	2							
A*A(-1)=	1	C				matrix multiplied by its inverse gives the identity matrix				
	C	1								

² Inverse of a 2x2 Matrix